

TKR Simulation and Reconstruction Overview

People
Simulation and Digitization
Reconstruction
Status / Summary

Tracker Reconstruction Manpower

(Condensed from Delta-PDR)

- TKR software team at SLAC
 - Manpower
 - Tracy Usher
 - Leon Rochester
 - Hiro Tajima
 - Major Tasks
 - Track and Vertex Reconstruction
 - Geometry, calibration, Alignment, ...
 - Support, Maintenance and Documentation
 - Analysis
- TKR Software team at UCSC
 - Manpower
 - Bill Atwood
 - Brian Baughman
 - Major Tasks
 - Track and Vertex Reconstruction
 - Analysis

- TKR Software team at Pisa
 - Manpower
 - Michael Kuss
 - · Johann Cohen-Tanugi
 - Major Tasks
 - Vertex Finding and Fitting
 - Algorithm test package
- TKR Software teams at Bari and Perugia
 - Manpower

• N.Giglietto (Bari)

• M.Brigida (Bari)

C. Cecchi (Perugia)

M. Pepe (Perugia)

- Major Tasks
 - Simulation and Digitization
 - ToT

Simulation / Digitization

Geant4 treats the entire silicon plane as a unit. Energy is deposited with "landau" fluctuations. Digitization figures out which strips are hit.

Later, in the reconstruction phase, the clustering algorithm groups adjacent strips.

Bari Digitization

The second algorithm (BariDigiAlg) is a complete model:

- electrostatics
- ionization clusters
- electron-hole drift
- electronic pulse-shaping
- electronic noise
- time over threshold

Time above threshold (green line) for 5 adjacent strips

Simulation and Digitization Overview

- Simulation
 - Some tunable parameters; see performance talk
- Digitization: two algorithms are complementary
 - Simple digitization is the default
 - Fast, but "simple"
 - Can be refined with results from the Bari digitization
 - Interface is most developed
 - standard random number generator
 - relational tables
 - random noise hits
 - Bari digitization
 - Gives more nuanced information
 - Currently very slow
 - Recently interfaced to Gleam; above features not yet in place
 - Is now being used to study ToT in Engineering Module (EM)

TkrRecon Reconstruction

The Problem

Basic Goals:

- Determine the incident direction of gamma rays converting within the tracker
- Provide help for rejecting backgrounds
- Augment the event energy determination

Challenges:

- Want to reconstruct Gammas across a wide energy range:
 - From less than 30 MeV
 - To greater than 100 GeV
- Silicon strips in x and y projections only
 - No stereo projections ambiguities can arise in attempting to mate x and y projections to form 3D tracks.
- Don't know individual track energy
 - Cal returns total event energy, cannot "see" individual track energies
- Material in the Tracker creates special problems for tracking the electron and positron resulting from the gamma conversion:
 - Multiple Scattering
 - Production of secondaries from Bremsstrahlung
 - These processes occur primarily in the tungsten converters but also in the other materials comprising the tracker
 - Not all gammas convert in the Tungsten radiators...

TkrRecon Reconstruction Overview

- Basic goals for the reconstruction
 - Determine the incident direction of gammas converting within the tracker
 - Provide help for rejecting Cosmic Ray backgrounds
 - Augment the event energy determination
- Additional goals for the organization of the reconstruction code
 - Interchangeability
 - Provide the ability to easily change a particular reconstruction algorithm
 - Allows for the development of alternate methods for solving the problem
 - Reduction in complexity
 - · Break into smaller well defined tasks
 - Easier to understand each piece separately
 - Allows more people to be involved
 - Improve long term maintainability
 - Smaller pieces easier to understand for future code maintainers
 - Provide documentation to aid future code maintainers
 - Geometry independent
 - All geometry information obtained externally to the TkrRecon package
 - Provide for the ability to easily switch between various test modules

Step 1: Clustering

- •Simulation deposits energy in silicon layers crossed by particles
- •Digitization apportions energy to individual strips and then determines which are "hits"

Recon Step 1: Clustering

- Adjacent hit strips combined to form centroid
- Strip ID's converted to position
- Also (coming soon):
 - Hot/dead strips
 - Alignment

Steps 2 & 3: Tracking Finding and Fitting

Recon Step 2: Track Finding - associate clusters to form candidate tracks

Recon Step 3: Track Fit - Perform fit to associated clusters (from track finding candidates) to obtain track parameters

See Bill Atwood's talk following overview

Step 4: Vertexing

Recon Step 4: Vertexing – Find common intersection point of fit track pairs in event. Combine fit track parameters to get vertex direction

Again, see Bill Atwood's talk for more details

Final Product

TkrRecon Reconstruction Overview

Code Organization

•	Organize the	four main	tasks into	independent	Gaudi "Algorithms"
---	--------------	-----------	------------	-------------	--------------------

Each successive algorithm builds u	pon the work of the previous step
 Clustering of hit strips 	☐ TkrClusterAlg
 Track Finding 	☐ TkrFindAlg
 Track Fitting 	☐ TkrTrackFitAlg
 Vertex Finding and Fitting 	☐ TkrVertexAlg
Above implemented as Gaudi "Sub	Algorithms" of a main driving algorithm
TkrReconAlg	

- All output stored in the Gaudi "Transient Data Store" (TDS)
- Algorithm Interchangeability achieved through the use of Gaudi "Tools"
 - Particular reconstruction method implemented as a Gaudi "Tool"
 - SubAlgorithm then uses the right tool for the job
 - Can be selected at initialization
 - · Can be changed "on the fly" during execution
- Use Gaudi "Services" to provide necessary information
 - Geometry (and alignment)
 - Reconstruction Constants
 - Calibration
 - Etc.

GLAST-SAS TkrRecon

Tracker Reconstruction Diagram

TkrRecon Reconstruction

Code Documentation

Documentation Exists!!

- Doxygen comments inserted into code
- Code and algorithm descriptions exist
- Recon flow diagram added
- etc.

Credit where credit is due

- Required by the Documenation Task Force
- DTF has reviewed TkrRecon (twice!)

Go and see it yourself!

- Link at bottom of page
- Or
 - Go to software web page
 - Follow link to DTF
 - Follow link to TkrRecon Review II

TkrRecon Reconstruction

Summary

- Since the PDR, TkrRecon has been successfully reorganized
 - Reconstruction broken into smaller and easier to manage modules
 - Makes use of Gaudi Algorithms, Tools and Services to accomplish tasks
 - Geometry obtained from xml files via detModel
 - Currently only Full flight
 - Reconstruction constants separated into independent singleton object
 - Values can be modified in jobOptions file at initialization
- Interchangeability feature has been demonstration
 - Alternate track finding methods exist (but need more development)
 - Alternate vertex fitting method under development
- Have completed two rounds of code documentation
 - See Documentation Task Force page for TkrRecon
- "Released" as part of the SAS September Release
 - Default reconstruction the "Combo" recon
 - Again, see Bill Atwood's talk following this
- Performance studies underway
 - See final TkrRecon talk for brief survey of some current topics